Computer simulations of block copolymer tethered nanoparticle self-assembly.
نویسندگان
چکیده
We perform molecular simulations to study the self-assembly of block copolymer tethered cubic nanoparticles. Minimal models of the tethered nanoscale building blocks (NBBs) are utilized to explore the structures arising from self-assembly. We demonstrate that attaching a rigid nanocube to a diblock copolymer affects the typical equilibrium morphologies exhibited by the pure copolymer. Lamellar and cylindrical phases are observed in both systems but not at the corresponding relative copolymer tether block fractions. The effect of nanoparticle geometry on phase behavior is investigated by comparing the self-assembled structures formed by the tethered NBBs with those of their linear ABC triblock copolymer counterparts. The tethered nanocubes exhibit the conventional triblock copolymer lamellar and cylindrical phases when the repulsive interactions between different blocks are symmetric. The rigid and bulky nature of the cube induces interfacial curvature in the tethered NBB phases compared to their linear ABC triblock copolymer counterparts. We compare our results with those structures obtained from ABC diblock copolymer tethered nanospheres to further elucidate the role of cubic nanoparticle geometry on self-assembly.
منابع مشابه
Mesoscale Computer Simulations of Polymer-tethered Organic/inorganic Nanocube Self-assembly
A molecular simulation study of the mesoscale self-assembly of tethered nanoparticles having a cubic geometry is presented. Minimal models of the tethered nanocubes are developed to represent a polyhedral oligomeric silsesquioxane (POSS) molecule with polymeric substituents. The models incorporate some of the essential structural features and interaction specificity of POSS molecules, and facil...
متن کاملSelf-organization of nanoscopic building blocks into ordered assemblies
We studied the self-assembly of nanoscopic building blocks comprised of polymer-tethered nanoparticles using computer simulation and predict that these building blocks can assemble into monoand multi-layer sheets and shells. The simulations further demonstrate that for some nanoparticle geometries and tethered nanoparticle topologies, ideas from block copolymers, surfactants and liquid crystals...
متن کاملDirected assembly of functionalized nanoparticles with amphiphilic diblock copolymers.
The ability to design and fabricate highly ordered superstructures from nanoscale particles remains a major scientific and technological challenge. Patchy nanoparticles have recently emerged as a novel class of building units to construct functional materials. Using simulations of coarse-grained molecular dynamics, we propose a simple approach to achieve soft nanoparticles with a self-patchines...
متن کاملSimulations of Organic-tethered Silsesquioxane Nanocube Assemblies
Polyhedral oligomeric silsesquioxane (POSS) based materials are a class of organic/inorganic hybrid nanomaterials with many interesting properties. Recent experiments have demonstrated that self-assembly of tethered POSS nanocubes is a promising route to the synthesis of novel materials with highly ordered, complex nanostructures. Using a coarsegrained model developed for tethered POSS, we perf...
متن کاملControlled Supramolecular Assembly of Micelle-Like Gold Nanoparticles in PS-<italic>b</italic>-P2VP Diblock Copolymers via Hydrogen Bonding
Ligand molecules tethered on the surface of inorganic nanoparticles play an important role in the synthesis and application of nanoparticles due to their dramatic influence over surface properties. Tailoring of nanoparticle surfaces with ligands is therefore a key factor for stabilizing nanoparticles in various solvents as well as for controlling hierarchical assembly of nanoparticles to give f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 125 6 شماره
صفحات -
تاریخ انتشار 2006